Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nazan Ocak, ${ }^{\text {a }}$ Canan Kazak, ${ }^{\text {a }}$
 Sema Öztürk, ${ }^{\text {b }}$ Caliskan Zerrin, ${ }^{\text {c }}$ Nergis Arsu, ${ }^{c}$ Hoong-Kun Fun ${ }^{\text {d }}$ and Ahmet Erdönmez ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR55139, Kurupelit-Samsun, Turkey, ${ }^{\text {b }}$ Department of Physics, Erciyes University, TR-38039, Kayseri, Turkey, ${ }^{\text {c Department of Chemistry, }}$ Yíldíz Technical University, TR-34210, Istanbul, Turkey, and ${ }^{\mathbf{d} X \text {-ray Crystallography Unit, School }}$ of Physics, Universiti Sains Malaysia, 11800
USM, Penang, Malaysia

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.058$
ωR factor $=0.136$
Data-to-parameter ratio $=20.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

erythro-2-Piperidinyl-1,2-diphenylethanol

The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$, contains two phenyl rings and a piperidinyl ring. The dihedral angle between the phenyl rings is $40.99(5)^{\circ}$. The piperidine ring has a chair conformation. There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Comment

During the process of UV-radiation curing, oxygen is present as a free radical in the medium. To overcome the negative effect caused by the oxygen, we synthesized erythro-2-piper-idinyl-1,2 diphenylethanol to use it as a hydrogen donor for Type II initiators (Davidson, 1999). In this paper we report the structure of erythro-2-piperidinyl-1,2 diphenylethanol, (I). An ORTEPIII (Burnett \& Johnson, 1996) plot of the structure is shown in Fig. 1.

(I)

The C6-N1 and $\mathrm{C} 1-\mathrm{N} 1$ bond distances are 1.4749 (19) and $1.4730(18) \AA$, respectively, and are similar to the corresponding bond lengths in ethyl 4-\{2-[1-(6-methyl-3-pyridazinyl)-4-piperidinyl]ethoxy\}benzoate $[1.467$ (5) and 1.472 (4) A; Jottier et al., 1991] and 3-\{2-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1-piperidinyl]ethyl\}-2,9-dimethyl]-4H-pyrido[1,2-a]pyrimidin-4-one (Ocaperidone) [1.477 (9) and 1.463 (9) Å; Jottier et al., 1992]. The C7-N1, C7-C14 and $\mathrm{C} 14-\mathrm{O} 2$ bond distances are 1.4872 (17) 1.5563 (19) and 1.4286 (17) A, respectively, similar to the corresponding bond lengths in N-(2-hydroxyethyl)-piperidine, N-(2hydroxyethyl)morpholine and N-(2-hydroxyethyl)piperazine [1.495 (4), 1.493 (4) and 1.397 (4) Å, respectively; Castellari \& Sabatino, 1996]. The erythro-2-piperidinyl-1,2-diphenyl ethanol molecule contains three rings: two phenyl rings and a piperidinyl ring. For the piperidinyl ring we calculated, following the method of Cremer \& Pople (1975), phase angle $\theta_{2}=2.15(17)^{\circ}$ and $\varphi_{2}=34(5)^{\circ}$, indicating a chair conformation, and a puckering amplitude $Q=0.5814$ (17) \AA.

There is an intramolecular $\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1$ hydrogen bond (Table 1).

Received 2 September 2002 Accepted 11 September 2002 Online 20 September 2002

Experimental

1 g of trans-stilbene oxide and 1 molar equivalent of distilled piperidine were refluxed for 12 h with vigorous stirring. The product was extracted with diethyl ether and excess morpholine was separated by the addition of 5 ml of distilled water. The combined organic layers were washed with distilled water several times. The solution was dried over anhydrous magnesium sulfate. The crude product was recrystallized from ethanol. M.p: 373 K Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$: C, 81.14; H, 8.18; N, 4.98. Found C, 81.22; H, 8.19; N, 5.03.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}$
$M_{r}=281.38$
Monoclinic, $P 2_{1} / n$
$a=13.6624(10) \AA$
$b=5.6452(10) \AA$
$c=20.678(4) \AA$
$\beta=93.46(4)^{\circ}$
$V=1591.9(4) \AA^{3}$
$Z=4$
$D_{x}=1.174 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 5874
reflections
$\theta=3.0-28.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Block, colourless
$0.72 \times 0.50 \times 0.36 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none
9095 measured reflections
3833 independent reflections

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) drawing of the title compound, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.

All H atoms, located in a difference Fourier map, were positioned geometrically and constrained with a riding model. The $\mathrm{C}-\mathrm{H}$ bond distances range from 0.93 to 0.98 A.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. SÖ thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Castellari, C. \& Sabatino, P. (1996). Acta Cryst. C52, 1708-1712.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Davidson, R. S. (1999). Exploring the science, technology and applications of UV EB curing. London: SITA Technology Ltd.
Jottier, W. I., De Winter, H. L., Blaton, N. M., Peeters, O. M. \& De Ranter, C. J. (1991). Acta Cryst. C47, 1517-1520.

Jottier, W. I., De Winter, H. L., Peeters, O. M., Blaton, N. M. \& De Ranter, C. J. (1992). Acta Cryst. C48, 1827-1830.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXL97 and SHELXTL. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). PLATON. University of Utrecht, The Netherlands.

